Adaptive Convolutional ELM For Concept Drift Handling in Online Stream Data
نویسندگان
چکیده
In big data era, the data continuously generated and its distribution may keep changes overtime. These challenges in online stream of data are known as concept drift. In this paper, we proposed the Adaptive Convolutional ELM method (ACNNELM) as enhancement of Convolutional Neural Network (CNN) with a hybrid Extreme Learning Machine (ELM) model plus adaptive capability. This method is aimed for concept drift handling. We enhanced the CNN as convolutional hiererchical features representation learner combined with Elastic ELM (ELM) as a parallel supervised classifier. We propose an Adaptive OS-ELM (AOS-ELM) for concept drift adaptability in classifier level (named ACNNELM-1) and matrices concatenation ensembles for concept drift adaptability in ensemble level (named ACNNELM-2). Our proposed Adaptive CNNELM is flexible that works well in classifier level and ensemble level while most current methods only proposed to work on either one of the levels. We verified our method in extended MNIST data set and not MNIST data set. We set the experiment to simulate virtual drift, real drift, and hybrid drift event and we demonstrated how our CNNELM adaptability works. Our proposed method works well and gives better accuracy, computation scalability, and concept drifts adaptability compared to the regular ELM and CNN. Further researches are still required to study the optimum parameters and to use more varied image data set. Keywords— deep learning, extreme learning machine, convolutional, neural network, big data, online,concept drift
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملAdaptive Online Sequential ELM for Concept Drift Tackling
A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as ad...
متن کاملEnsemble of subset online sequential extreme learning machine for class imbalance and concept drift
In this paper, a computationally efficient framework, referred to as ensemble of subset online sequential extreme learning machine (ESOS-ELM), is proposed for class imbalance learning from a concept-drifting data stream. The proposed framework comprises a main ensemble representing short-term memory, an information storage module representing long-term memory and a change detection mechanism to...
متن کاملAlgorithm to handle Concept Drifting in Data Stream Mining
Data Stream Mining is the evolving field of research. Mining continuous data streams brings unique opportunities but also new challenges. This paper will describe and evaluate the proposed classifier which uses ensemble classifier along with the boosting concept. Adaptive windowing is also used for handling the data stream. Empirical study will show that the proposed classifier takes less memor...
متن کاملTowards Online Concept Drift Detection with Feature Selection for Data Stream Classification
Data Streams are unbounded, sequential data instances that are generated very rapidly. The storage, querying and mining of such rapid flows of data is computationally very challenging. Data Stream Mining (DSM) is concerned with the mining of such data streams in real-time using techniques that require only one pass through the data. DSM techniques need to be adaptive to reflect changes of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.02348 شماره
صفحات -
تاریخ انتشار 2016